Code: 20ES1601

III B.Tech - II Semester – Regular / Supplementary Examinations APRIL 2024

AI TOOLS (CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

		BL	СО	Max. Marks				
UNIT-I								
1	Elaborate the Applications of AI in detail.	L2	CO1	14 M				
OR								
2	Discuss the foundations of AI.	L2	CO1	14 M				
UNIT-II								
3	Explain about Unsupervised Learning in	L3	CO2	14 M				
	detail with an example.							
OR								
4	a) Discuss about Reinforcement Learning	L3	CO2	7 M				
	in detail with an example.							

	b)	Explain Linear Regression Model with	L3	CO2	7 M				
		an example.							
UNIT-III									
5	_	plain the role of Recognition in	L4	CO4	14 M				
	Cor	nputer vision with an example.							
	OR								
6	Exp	plain the role of Decision making	L4	CO4	14 M				
	pro	cess in Machine Learning.							
UNIT-IV									
7	Exp	plain the CNN architecture with	L3	CO3	14 M				
	exa	mple.							
OR									
		OK							
8	Wh	at are the key architectural components	L3	CO3	14 M				
	and	training techniques that contribute to							
	the	effectiveness of convolution neural							
	net	works (CNNs) in image recognition							
	task	as, and how do they compare to							
	trac	litional machine learning approaches?							
UNIT-V									
9	Dis	cuss in detail about the role of Deep	L3	CO3	14 M				
	Lea	rning in Speech Recognition with an							
	exa	mple.							

	OR					
10	How the Deep Learning uses in computer	L3	CO3	14 M		
	vision and explain with real time example.					